Bank Soal Matematika Dasar Statistika Data Tunggal (*Soal dan Pembahasan)
"Pak aku ada pertanyaan" adalah satu kalimat yang paling ditunggu oleh setiap guru jika masuk kelas pada umumnya. Jika ada guru yang tidak suka pada kalimat tersebut berarti ada yang salah pada guru tersebut sehingga guru tersebut sudah perli diberi pikinik beberapa minggu untuk 'merefresh' semangat keguruannya.
Kemarin beberapa menit sebelum jam pembelajaran selesai dan akan segera istirahat, salah satu generasi penerus bangsa yang ganteng di kelas saya namanya Bernat Yusuf Sihite mengangkat tangannya dan menyodorkan buku grafindo miliknya. Pak bagaimana menyelesaikan soal ini tanyanya sambil menunjukkan soal nomor 29. Karena soal yang lumayan panjang, Bernat menuliskannya di papan tulis, seperti tertulis sebagai berikut;
Skor-skor dalam suatu ujian diolah dengan menggunakan rumus $y=px+q$ dimana $p$ dan $q$ adalah konstanta dan $x$ dan $y$ masing-masing adalah skor mentah dan skor hasil. Jika mean dan simpangan baku skor mentah masing-masing adalah $42$ dan $10$; dan mean dan simpangan baku skor hasil masing-masing adalah $50$ dan $15$ maka nilai $ 2p-q $ adalah...
$\begin{align}
(A)\ & 16 \\
(B)\ & 15 \\
(C)\ & 14 \\
(D)\ & 13 \\
(E)\ & 12
\end{align}$
Dari apa yang disampaikan pada soal bahwa $ x $ adalah skor mentah dimana mean-nya adalah $42$, sehingga kita peroleh persamaan:
$ \dfrac{x_{1}+x_{2}+\cdots +x_{n}}{n}=42 $
$ x_{1}+x_{2}+\cdots +x_{n}=42n $
Begitu juga dengan $ y $ adalah skor hasil dimana mean-nya adalah $50$, sehingga kita peroleh persamaan:
$ \dfrac{y_{1}+y_{2}+\cdots +y_{n}}{n}=50 $
$ y_{1}+y_{2}+\cdots +y_{n}=50n $
$ px_{1}+q+px_{2}+q+\cdots +px_{n}+q=50n $
$ p\left ( x_{1}+x_{2}+\cdots +x_{n} \right )+nq=50n $
$ 42n\cdot p+nq=50n $
$ 42p+q=50 $
$ q=50-42p $
Pada soal juga disampaikan bahwa simpangan baku $ x $ dan $ y $ berturut-turut adalah $10$ dan $15$, sehingga kita dapatkan persamaan sebagai berikut:
$ s^{2}=\dfrac{1}{n} \sum_{i}^{n}\left ( x_{i}-\bar{x}\right )^{2} $
$ 10^{2}=\dfrac{1}{n} \sum_{i}^{n}\left ( x_{i}-\bar{x}\right )^{2} $
$ 100n=\left ( x_{1}-42 \right )^{2}+\left ( x_{2}-42 \right )^{2}+\cdots +\left ( x_{n}-42 \right )^{2} $
$ 100n=x_{1}^{2}-84x_{1}+42^{2}+x_{2}^{2}-84x_{2}+42^{2}+\cdots+x_{n}^{2}-84x_{n}+42^{2} $
$ 100n=x_{1}^{2}+x_{2}^{2}+\cdots+x_{n}^{2}-84(x_{1}+x_{2}+\cdots+x_{n})+n\cdot 42^{2} $
$ x_{1}^{2}+x_{2}^{2}+\cdots+x_{n}^{2}=100n+84(x_{1}+x_{2}+\cdots+x_{n})-n\cdot 42^{2} $
$ x_{1}^{2}+x_{2}^{2}+\cdots+x_{n}^{2}=100n+84(42n)-n\cdot 42^{2} $
Dengan melakukan proses aljabar yang sama untuk skor hasil yaitu $ y $ kita memperoleh persamaan sebagai berikut:
$ y_{1}^{2}+y_{2}^{2}+\cdots+y_{n}^{2}=225n+100(y_{1}+y_{2}+\cdots+y_{n})-n\cdot 50^{2} $
$ y_{1}^{2}+y_{2}^{2}+\cdots+y_{n}^{2}=225n+100(50n)-n\cdot 50^{2} $
Nilai $ y_{1}=px_{1}+q $ sehingga $ y_{1}^{2}=\left (px_{1} +q \right )^{2}=p^{2}x_{1}^{2}+2pqx_{1}+q^{2} $ sampai dengan $ y_{n}^{2}=\left (px_{n} +q \right )^{2}=p^{2}x_{n}^{2}+2pqx_{n}+q^{2} $
Dengan mensubstitusikan nilai $ y_{n}^{2}=p^{2}x_{n}^{2}+2pqx_{n}+q^{2} $, sekarang kita peroleh persamaan dengan bentuk sebagai berikut:
$ y_{1}^{2}+y_{2}^{2}+\cdots+y_{n}^{2}$
$=225n+100(50n)-n\cdot 50^{2} $
$ p^{2} x_{1}^{2}+2pqx_{1}+q^{2}+\cdots +p^{2}x_{n}^{2}+2pqx_{n}+q^{2}$
$=225n+100(50n)-n\cdot 50^{2} $
$ p^{2} \left (x_{1}^{2}+x_{2}^{2}+\cdots+x_{n}^{2} \right )+2pq\left (x_{1}+x_{2}+\cdots +x_{n}\right ) +nq^{2}$
$=225n+100(50n)-n\cdot 50^{2} $
$ p^{2} \left (100n+84(42n)-n\cdot 42^{2}\right )+2pq\left (42n\right ) +nq^{2}$
$=225n+100(50n)-n\cdot 50^{2} $
$ p^{2} \left (100+84(42)-42^{2}\right )+2pq\left (42\right ) +q^{2}$
$=225+100(50)-50^{2} $
$ p^{2} \left (50\cdot 2+2\cdot42\cdot42-42^{2}\right )+2pq\left (42\right ) +q^{2}$
$=225+2\cdot50\cdot50-50^{2} $
$ p^{2} \left (50\cdot 2+42^{2}\right )+2pq\left (42\right ) +q^{2}$
$=225+50^{2} $
$ p^{2} \left (50\cdot 2+42^{2}\right )+2p\left (50-42p \right )\left (42\right ) +\left (50-42p \right )^{2}$
$=225+50^{2} $
$ 100p^{2}+p^{2}42^{2}+4200p-2\cdot42^{2}p^{2}+50^{2}-2\cdot 50\cdot 42p+42^{2}p^{2}$
$=225+50^{2} $
$ 100p^{2}=2725-2500 $
$ p^{2}=\dfrac{225}{100} $
$ p^{2}=2,25 $
$ p=1,5 $
$ q=50-42p $
$ q=50-42\left (1,5 \right ) $
$ q=50-63 $
$ q=-13 $
...
$\therefore\ 2p-q=16 \, \, \, (A) $
Untuk menambah perbendaharaan kita tentang soal-soal statistika yang sudah pernah ditanyakan pada Ujian Nasional atau Ujian Masuk PTN, mari kita diskusikan beberapa soal berikut;
1. Soal SIMAK UI 2011 (*Soal Lengkap)
Jika rata-rata $20$ bilangan bulat nonnegative berbeda adalah $20$, maka bilangan terbesar yang mungkin adalah...
$\begin{align}
(A)\ & 210 \\
(B)\ & 229 \\
(C)\ & 230 \\
(D)\ & 239 \\
(E)\ & 240
\end{align}$
Jika $20$ bilangan bulat nonnegative kita misalkan $x_{1},\ x_{2},\ x_{3}, \cdots,\ x_{20}$, maka
$\dfrac{x_{1}+x_{2}+x_{3}+\cdots +x_{n}}{n}=\bar{x}$
$\dfrac{x_{1}+x_{2}+x_{3}+\cdots +x_{20}}{20}=20$
$x_{1}+x_{2}+x_{3}+\cdots +x_{20}=400$
Agar kita peroleh $x_{20}$ bilangan yang terbesar yang mungkin maka kita harus beranggapan bahwa $x_{1},\ x_{2},\ x_{3}, \cdots\ x_{19}$ adalah bilang bulat nonnegative berbeda yang terkecil yaitu $1,\ 2,\ 3,\ \cdots\ 19$, sehingga:
$x_{1}+x_{2}+x_{3}+\cdots +x_{19}+x_{20}=400$
$1+2+3+\cdots +19+x_{20}=400$
$190+x_{20}=400$
$x_{20}=400-190$
$x_{20}=210$
$\therefore$ Pilihan yang sesuai adalah $(A)\ 210$
2. Soal SIMAK UI 2011 (*Soal Lengkap
Sebuah keluarga mempunyai $5$ orang anak. Anak tertua berumur $2$ kali dari umur anak termuda, sedangkan $3$ anak yang lainnya masing-masing berumur kurang $3$ tahun dari anak tertua, lebih $4$ tahun dari anak termuda, dan kurang $5$ tahun dari anak tertua. Jika rata-rata umur mereka adalah $16$ tahun, maka kuadrat dari selisih umur anak kedua dan anak ketiga adalah...
$\begin{align}
(A)\ & 4 \\
(B)\ & 6,25 \\
(C)\ & 9 \\
(D)\ & 12,25 \\
(E)\ & 20,25
\end{align}$
Jika kelima orang anak diurutkan dari anak pertama sampai anak kelima kita misalkan $a_{1},\ a_{2},\ a_{3},\ a_{4},\ a_{5}$, maka umur mereka dapat kita tuliskan dalam beberapa persamaan $a_{1}=2a_{5}$, $a_{1}-3$, $a_{5}+4$ dan $a_{1}-5$
$\dfrac{a_{1} + a_{2} + a_{3} + a_{4} + a_{5}}{5}=\bar{x}$
$\dfrac{a_{1} + a_{2} + a_{3} + a_{4} + a_{5}}{5}=16$
$a_{1} + a_{2} + a_{3} + a_{4} + a_{5}=90$
$a_{1} + a_{1}-3 + a_{5}+4 + a_{1}-5 + a_{5}=90$
$3a_{1} +2a_{5}-4=90$
$3a_{1} +2a_{5}=94$
$3a_{1} +a_{1}=94$
$4a_{1}=94$
$a_{1}=23,5$
$a_{5}=11,75$
$a_{1}-3=20,5$
$a_{1}-5=18,5$
$a_{5}+4=15,75$
kuadrat dari selisih umur anak kedua dan anak ketiga:
$\left (a_{2} - a_{3} \right )^{2}=\left (20,5-18,5 \right )^{2}$
$\left (a_{2} - a_{3} \right )^{2}=2^{2}=4$
$\therefore$ Pilihan yang sesuai adalah $(A)\ 4$
3. Soal SIMAK UI 2011 (*Soal Lengkap)
Pada suatu ujian yang diikuti oleh $50$ orang mahasiswa diperoleh nilai rata-rata ujian adalah $30$ dengan median $40$, simpangan baku $15$, dan simpangan kuartil $25$. Untuk memperbaiki nilai rata-rata, semua nilai dikalikan $2$ kemudian dikurangi $10$. Akibat yang terjadi adalah...
$\begin{align}
(1)\ & \text{Meannya menjadi}\ 50 \\
(2)\ & \text{Simpangan bakunya menjadi}\ 30 \\
(3)\ & \text{Mediannya menjadi}\ 70 \\
(4)\ & \text{Simpangan kuartilnya menjadi}\ 50
\end{align}$
Misalkan
Data Lama: $x_{1},\ x_{2},\ x_{3},\ \cdots\ x_{50}$
$\bar{x}_{L}=\dfrac{x_{1}+x_{2}+x_{3}+ \cdots + x_{50}}{50}$
$30=\dfrac{x_{1}+x_{2}+x_{3}+ \cdots + x_{50}}{50}$
$1500=x_{1}+x_{2}+x_{3}+ \cdots + x_{50}$
$Me=\dfrac{1}{2}(x_{25}+x_{26})$
$40=\dfrac{1}{2}(x_{25}+x_{26})$
$80=x_{25}+x_{26}$
$s=\sqrt{\dfrac{1}{n}\sum_{i=1}^{n}\left ( x_{i}-\bar{x} \right )^{2}}$
$15=\sqrt{\dfrac{1}{50}\sum_{i=1}^{50}\left ( x_{i}-30 \right )^{2}}$
$15=\sqrt{\dfrac{1}{50}\left (\left ( x_{1}-30 \right )^{2}+\left ( x_{2}-30 \right )^{2}+\cdots+\left ( x_{50}-30 \right )^{2} \right )}$
$Q_{d}=\dfrac{1}{2}(Q_{3}-Q_{1})$
$25=\dfrac{1}{2}(x_{38}-x_{13})$
$50=x_{38}-x_{13}$
Data Baru: $2x_{1}-10,\ 2x_{2}-10,\ 2x_{3}-10,\ \cdots\ 2x_{50}-10$
$\bar{x}_{B}=\dfrac{2x_{1}-10+2x_{2}-10+2x_{3}-10+ \cdots+ 2x_{50}-10}{50}$
$\bar{x}_{B}=\dfrac{2x_{1}-10+2x_{2}-10+2x_{3}-10+ \cdots+ 2x_{50}-10}{50}$
$\bar{x}_{B}=\dfrac{2x_{1}+2x_{2}+2x_{3}+ \cdots+ 2x_{50}-50 \times 10}{50}$
$\bar{x}_{B}=\dfrac{2(x_{1}+x_{2}+x_{3}+ \cdots+ x_{50})-50 \times 10}{50}$
$\bar{x}_{B}=\dfrac{2(x_{1}+x_{2}+x_{3}+ \cdots+ x_{50})}{50}- \dfrac{50 \times 10}{50}$
$\bar{x}_{B}=2\left (\dfrac{x_{1}+x_{2}+x_{3}+ \cdots+ x_{50}}{50} \right )- 10$
$\bar{x}_{B}=2\left ( 30 \right )- 10$
$\bar{x}_{B}=50$
$\therefore$ Jika sudah paham langkah-langkah diatas untuk berikutnya sudah bisa menggunakan aturan bahwa rata-rata berubah mengikuti "tindakan" yang diberikan kepada setiap data.
Jika data lama rata-ratanya $30$ lalu setiap data dikali $2$ dan dikurang $10$ maka rata-rata baru adalah $2 \times 30 -10=50$
$Me_{B}=\dfrac{1}{2}(2x_{25}-10+2x_{26}-10)$
$Me_{B}=\dfrac{1}{2}(2x_{25}+2x_{26}-20)$
$Me_{B}=x_{25}+x_{26}-10$
$Me_{B}=80-10=70$
$\therefore$ Jika sudah paham langkah-langkah diatas untuk berikutnya sudah bisa menggunakan aturan bahwa median berubah mengikuti "tindakan" yang diberikan kepada setiap data.
Jika data lama mediannya $40$ lalu setiap data dikali $2$ dan dikurang $10$ maka median baru adalah $2 \times 40-10=70$
$s=\sqrt{\dfrac{1}{n}\sum_{i=1}^{n}\left ( x_{i}-\bar{x} \right )^{2}}$
$s_{B}=\sqrt{\dfrac{1}{50}\sum_{i=1}^{50}\left ( 2x_{i}-10-(2\bar{x}-10) \right )^{2}}$
$s_{B}=\sqrt{\dfrac{1}{50}\sum_{i=1}^{50}\left ( 2x_{i}-10-2\bar{x}+10 \right )^{2}}$
$s_{B}=\sqrt{\dfrac{1}{50}\sum_{i=1}^{50}\left ( 2x_{i} -2\bar{x} \right )^{2}}$
$s_{B}=\sqrt{\dfrac{1}{50}\sum_{i=1}^{50}(2^{2})\left ( x_{i} -\bar{x} \right )^{2}}$
$s_{B}=2\sqrt{\dfrac{1}{50}\sum_{i=1}^{50} \left ( x_{i} -\bar{x} \right )^{2}}$
$s_{B}=2(15)=30$
$\therefore$ Jika sudah paham langkah-langkah diatas untuk berikutnya sudah bisa menggunakan aturan bahwa simpangan baku berubah mengikuti "tindakan" untuk perkalian (pembagian) yang diberikan kepada setiap data.
Jika data lama simpangan bakunya $15$ lalu setiap data dikali $2$ dan dikurang $10$ maka simpangan baku baru adalah $2 \times 15=30$
$Q_{d_{B}}=\dfrac{1}{2}(Q_{3}-Q_{1})$
$Q_{d_{B}}=\dfrac{1}{2}\left ( \left (2x_{38}-10 \right )-\left (2x_{13}-10 \right ) \right )$
$Q_{d_{B}}=\dfrac{1}{2}\left ( 2x_{38}-10 - 2x_{13}+15 \right )$
$Q_{d_{B}}=\dfrac{1}{2}\left ( 2x_{38}- 2x_{13} \right )$
$Q_{d_{B}}= x_{38}- x_{13}$
$Q_{d_{B}}= 50$
$\therefore$ Jika sudah paham langkah-langkah diatas untuk berikutnya sudah bisa menggunakan aturan bahwa simpangan quartil berubah mengikuti "tindakan" untuk perkalian (pembagian) yang diberikan kepada setiap data.
Jika data lama simpangan quartilnya $25$ lalu setiap data dikali $2$ dan dikurang $10$ maka simpangan quartil baru adalah $2 \times 25=50$
$\therefore$ Pilihan yang sesuai adalah $(E)\ (1)(2)(3)(4)$
4. Soal SBMPTN 2017 (*Soal Lengkap)
4. Diketahui median dan rata-rata berat badan $5$ balita adalah sama. Setelah ditambah satu data berat badan balita, rata-ratanya meningkat $1\ kg$, sedangkan mediannya tetap. Jika $6$ data berat badan tersebut diurutkan dari yang paling ringan ke yang paling berat, maka selisih berat badan antara balita terakhir yang ditambahkan dan balita di urutan ke-4 adalah...
$\begin{align}
(A)\ & 4 \\
(B)\ & \dfrac{9}{2} \\
(C)\ & 5 \\
(D)\ & 6 \\
(E)\ & \dfrac{13}{2}
\end{align}$
Misalkan
Data Lama: $b_{1},\ b_{2},\ b_{3},\ b_{4},\ b_{5}$
$\bar{x}_{L}=\dfrac{b_{1}+b_{2}+b_{3}+ b_{4} + b_{5}}{5}$
$b_{3}=\dfrac{b_{1}+b_{2}+b_{3}+ b_{4} + b_{5}}{5}$
$5b_{3}=b_{1}+b_{2}+b_{3}+ b_{4} + b_{5}$
$4b_{3}=b_{1}+b_{2}+ b_{4} + b_{5}$
Data Baru: $b_{1},\ b_{2},\ b_{3},\ b_{4},\ b_{5},\ b_{b}$
$\bar{x}_{B}=\dfrac{b_{1}+b_{2}+b_{3}+ b_{4} + b_{5}+b_{b}}{6}$
$b_{3}+1=\dfrac{b_{1}+b_{2}+b_{3}+ b_{4} + b_{5}+b_{b}}{6}$
$6(b_{3}+1)= b_{1}+b_{2}+b_{3}+ b_{4} + b_{5}+b_{b} $
$6b_{3}+6= b_{1}+b_{2}+b_{3}+ b_{4} + b_{5}+b_{b} $
$5b_{3}+6= b_{1}+b_{2}+ b_{4} + b_{5}+b_{b} $
$5b_{3}+6=4b_{3}+b_{b} $
$b_{3}+6=b_{b} $
Karena masuknya data baru mengakibatkan rata-rata naik $1\ kg$ maka nilai $b_{b}$ lebih dari $b_{3}$, kemungkinan-kemungkinan urutan data adalah:
- $b_{1},\ b_{2},\ b_{3},\ b_{b},\ b_{4},\ b_{5}$
Nilai $b_{b}$ lebih dari $b_{3}$ sehingga pada kemungkinan ini median akan naik, sedangkan dikatakan median tetap $b_{3}$ maka pada posisi ini tidak memenuhi. - $b_{1},\ b_{2},\ b_{3},\ b_{4},\ b_{b},\ b_{5}$
pada kemungkinan ini karena median tetap sehingga $b_{3}=b_{4}$,
selisih $b_{b}-b_{4}$ adalah $b_{3}+6-b_{3}=6$
$\therefore$ Pilihan yang sesuai adalah $(D)\ 6$
5.Soal SBMPTN 2016 (*Soal Lengkap)
Nilai ujian Matematika $30$ siswa pada suatu kelas berupa bilangan cacah tidak lebih daripada $10$. Rata-rata nilai mereka adalah $8$ dan hanya terdapat $5$ siswa yang memperoleh nilai $7$. Jika $p$ menyatakan banyak siswa yang memperoleh nilai kurang dari $7$, maka nilai $p$ terbesar yang mungkin adalah...
$\begin{align}
(A)\ & 5 \\
(B)\ & 9 \\
(C)\ & 14 \\
(D)\ & 7 \\
(E)\ & 11
\end{align}$
Misalkan Data: $x_{1},\ x_{2},\ x_{3},\ \cdots\ x_{30}$
$\bar{x}=\dfrac{x_{1} + x_{2} + x_{3} + \cdots\ + x_{30}}{30}$
$8=\dfrac{x_{1} + x_{2} + x_{3} + \cdots\ + x_{30}}{30}$
$240=x_{1} + x_{2} + x_{3} + \cdots\ + x_{30}$
$240=x_{1} + x_{2} + x_{3} + \cdots\ + x_{25}+\ 5 \times 7$
$240=x_{1} + x_{2} + x_{3} + \cdots\ + x_{25}+ 35$
$205=x_{1} + x_{2} + x_{3} + \cdots\ + x_{25}$
Agar nilai $p$ terbesar maka kita harap nilai $p$ semuanya adalah $6$ dan nilai yang lebih dari $7$ adalah $10$.
Jumlah $25$ nilai yang tidak $7$ adalah $205$ dan nilainya diharapkan paling banyak adalah $6$ lalu $10$.
Jika semua nilai $6$ maka jumlahnya adalah $6 \times 25 =150$, agar tercapai $205$ dibutuhkan ada nilai $10$.
Nilai $10$ yang diharapkan yaitu sebanyak $13$.
Alternatif cara memperoleh: $\dfrac{55}{4}=13\ \text{sisa}\ 3$ artinya dibutuhkan nilai $10$ sebanyak $13$ dan nilai $9$ sebanyak $1$.
Nilai $6$ yang paling banyak adalah $30-5-13-1=11$
$\therefore$ Pilihan yang sesuai adalah $(E)\ 11$
6.Soal SBMPTN 2016 (*Soal Lengkap)
Jangkauan dan rata-rata nilai ujian $6$ siswa adalah $6$. Jika median data tersebut adalah $6$ dan selisih antara kuartil ke-1 dan ke-3 adalah $4$, maka jumlah dua nilai ujian tertiggi adalah...
$\begin{align}
(A)\ & 13 \\
(B)\ & 14 \\
(C)\ & 15 \\
(D)\ & 16 \\
(E)\ & 17
\end{align}$
Misalkan Data: $x_{1},\ x_{2},\ x_{3},\ \cdots\ x_{6}$
$\bar{x}=\dfrac{x_{1} + x_{2} + x_{3} + \cdots\ + x_{6}}{6}$
$6=\dfrac{x_{1} + x_{2} + x_{3} + \cdots\ + x_{6}}{6}$
$36=x_{1} + x_{2} + x_{3} + \cdots\ + x_{6}$
$\text{Median}=6$
$Me=\dfrac{1}{2}(x_{3}+x_{4})$
$6=\dfrac{1}{2}(x_{3}+x_{4})$
$12=x_{3}+x_{4}$
$\text{Jangkauan}=6$
$x_{6}-x_{1}=6$
$x_{1}=x_{6}-6$
$\text{Selisih Quartil}=4$
$Q_{3}-Q_{1}=4$
$x_{5}-x_{2}=4$
$x_{2}=x_{5}-4$
$x_{1} + x_{2} + x_{3} + x_{4}+ x_{5} + x_{6}=36$
$(x_{6}-6) + (x_{5}-4) + (12)+ x_{5} + x_{6}=36$
$2x_{5}+2x_{6}+2=36$
$2x_{5}+2x_{6}=34$
$x_{5}+x_{6}=17$
$\therefore$ Pilihan yang sesuai adalah $(E)\ 17$
7.Soal SBMPTN 2016 (*Soal Lengkap)
Rata-rata nilai ujian Matematika siswa di suatu kelas dengan $50$ siswa tetap sama meskipun nilai terendah dan tertinggi dikeluarkan. Jumlah nilai-nilai tersebut adalah $350$. Jika data nilai-nilai ujian Matematika tersebut merupakan bilangan asli yang tidak lebih besar dari $10$, maka jangkauan data nilai yang mungkin ada sebanyak...
$\begin{align}
(A)\ & 1 \\
(B)\ & 2 \\
(C)\ & 3 \\
(D)\ & 4 \\
(E)\ & 5
\end{align}$
Misalkan Data: $x_{1},\ x_{2},\ x_{3},\ \cdots\ x_{50}$
$\bar{x}=\dfrac{x_{1} + x_{2} + x_{3} + \cdots\ + x_{49}+x_{n}}{n}$
$\bar{x}=\dfrac{350}{50}$
$\bar{x}=7$
Rata-rata tetap jika $x_{1}$ dan $x_{50}$ dikeluarkan;
$\bar{x}=\dfrac{x_{2} + x_{3} + \cdots\ + x_{49}}{48}$
$7=\dfrac{x_{2} + x_{3} + \cdots\ + x_{49}}{48}$
$336=x_{2} + x_{3} + \cdots\ + x_{49}$
$x_{1} + x_{2} + x_{3} + \cdots\ + x_{49}+x_{n}$
$x_{1} + 336 + x_{50}=350$
$x_{1} +x_{50}=14$
Dengan $x_{1} +x_{50}=14$ dan $x_{1},\ x_{50}$ bilangan asli yang tidak lebih besar dari $10$.
Jangkauan data ($R=x_{50} -x_{1}$) yang mungkin adalah saat nilai $x_{50},\ x_{1}$ yaitu $10,\ 4$; $9,\ 5$; $8,\ 6$; $7,\ 7$.
$\therefore$ Pilihan yang sesuai adalah $(C)\ 4$
8.Soal SBMPTN 2016 (*Soal Lengkap)
Dalam suatu kelas terdapat $23$ siswa. Rata-rata nilai kuis aljabar mereka adalah $7$. Terdapat hanya $2$ orang yang memperoleh nilai yang sama yang merupakan nilai tertinggi, serta hanya $1$ orang yang memperoleh nilai terendah. Rata-rata nilai mereka berkurang $0,1$ jika semua nilai tertinggi dan nilai terendah dikeluarkan. Jika semua nilai tersebut berupa bilangan cacah tidak lebih dari pada $10$, maka nilai terendah yang mungkin ada sebanyak...
$\begin{align}
(A)\ & 1 \\
(B)\ & 2 \\
(C)\ & 3 \\
(D)\ & 4 \\
(E)\ & 5
\end{align}$
Misalkan Data: $x_{1},\ x_{2},\ \cdots\ x_{21},\ x_{22},\ x_{23}$
$\bar{x}=\dfrac{x_{1} + x_{2} + \cdots\ + x_{21}+ x_{22}+x_{23}}{23}$
$7=\dfrac{x_{1} + x_{2} + \cdots\ + x_{21}+ x_{22}+x_{23}}{23}$
$161=x_{1} + x_{2} + \cdots\ + x_{21}+ x_{22}+x_{23}$
Rata-rata berkurang $0,1$ jika $x_{22}, x_{23}$ dan $x_{1}$ dikeluarkan;
$\bar{x}=\dfrac{x_{2} + x_{3} + \cdots\ + x_{21}}{20}$
$6,9=\dfrac{x_{2} + x_{3} + \cdots\ + x_{21}}{20}$
$138=x_{2} + x_{3} + \cdots\ + x_{21}$
$161=x_{1} + x_{2} + \cdots\ + x_{21}+ x_{22}+x_{23}$
$161=x_{1} + 138 + x_{22}+x_{23}$
Misalkan nilai terendah adalah $m$ dan tertinggi adalah $n$.
$161=m + 138 + n+n$
$23=m + 2n$
Semua nilai berupa bilangan cacah tidak lebih dari pada $10$, nilai $m$ yang mungkin adalah:
- $m=1$ maka $1 + 2n=23$ $\rightarrow\ n=11$ (TM)
- $m=2$ maka $2 + 2n=23$ $\rightarrow\ n=\frac{21}{2}$ (TM)
- $m=3$ maka $3 + 2n=23$ $\rightarrow\ n=10$
- $m=4$ maka $4 + 2n=23$ $\rightarrow\ n=\frac{19}{2}$ (TM)
- $m=5$ maka $5 + 2n=23$ $\rightarrow\ n=9$
- $m=6$ maka $6 + 2n=23$ $\rightarrow\ n=\frac{17}{2}$ (TM)
- $m=7$ maka $7 + 2n=23$ $\rightarrow\ n=8$ (TM) Sebagai bahan bernalar, coba dipikirkan kenapa nilai $n$ diatas Tidak Memenuhi (TM)
$\therefore$ Pilihan yang sesuai adalah $(B)\ 2$
9.Soal SBMPTN 2016 (*Soal Lengkap)
Seorang siswa mengikuti $6$ kali ujian dengan nilai $5$ ujian pertama $6,\ 4,\ 8,\ 5$ dan $7$. Jika semua nilai dinyatakan dalam bilangan asli yang tidak lebih besar daripada $10$ dan rata-rata $6$ kali ujian lebih kecil dari mediannya, maka nilai ujian terakhir yang mungkin ada sebanyak...
$\begin{align}
(A)\ & 2 \\
(B)\ & 3 \\
(C)\ & 4 \\
(D)\ & 6 \\
(E)\ & 8
\end{align}$
Misalkan Data: $x_{1},\ x_{2},\ \cdots\, x_{5},\ x_{t}$
$\bar{x}=\dfrac{x_{1} + x_{2} + \cdots\ + x_{5}+x_{t}}{6}$
$\bar{x}=\dfrac{4 + 5 + 6 + 7+ 8+x_{t}}{6}$
$\bar{x}=\dfrac{30+x_{t}}{6}$
Pada data awal $4,\ 5,\ 6,\ 7,\ 8$ rata-rata adalah $6$ dan median adalah $6$.
Setelah ujian terakhir diikutkan rata-rata data lebih kecil dari median sehingga jika diurutkan, urutan data kemungkinannya adalah sebagai berikut:
- $4,\ 5,\ 6,\ 7,\ 8,\ x_{t}$
$\bar{x} \lt Me$
$\frac{1}{6}(30+x_{t}) \lt \frac{1}{2}(6+7) $
$30+x_{t} \lt 3(13) $
$30+x_{t} \lt 39 $
$x_{t} \lt 9 $
Nilai $x_{t}$ yang mungkin adalah $8$ - $4,\ 5,\ 6,\ 7,\ x_{t},\ 8$
$\bar{x} \lt Me$
$\frac{1}{6}(30+x_{t}) \lt \frac{1}{2}(6+7) $
$30+x_{t} \lt 3(13) $
$30+x_{t} \lt 39 $
$x_{t} \lt 9 $
Nilai $x_{t}$ yang mungkin adalah $7,\ 8$ - $4,\ 5,\ 6,\ x_{t},\ 7,\ 8,$
$\bar{x} \lt Me$
$\frac{1}{6}(30+x_{t}) \lt \frac{1}{2}(6+x_{t}) $
$30+x_{t} \lt 3(6+x_{t}) $
$30+x_{t} \lt 18+3x_{t} $
$30-18 \lt 3x_{t}-x_{t} $
$12 \lt 2x_{t} $
$6 \lt x_{t} $
Nilai $x_{t}$ yang mungkin adalah $7$ - $4,\ 5,\ x_{t},\ 6,\ 7,\ 8,$
$\bar{x} \lt Me$
$\frac{1}{6}(30+x_{t}) \lt \frac{1}{2}(x_{t}+6) $
$30+x_{t} \lt 3(x_{t}+6) $
$30+x_{t} \lt 3x_{t}+18 $
$30-18 \lt 3x_{t}-x_{t} $
$12 \lt 2x_{t} $
$6 \lt x_{t} $
Nilai $x_{t}$ tidak ada yang mungkin - $4,\ x_{t},\ 5,\ 6,\ 7,\ 8,$
$\bar{x} \lt Me$
$\frac{1}{6}(30+x_{t}) \lt \frac{1}{2}(5+6) $
$30+x_{t} \lt 3(11) $
$x_{t} \lt 33-30 $
$x_{t} \lt 3 $
Nilai $x_{t}$ tidak ada yang mungkin - $x_{t},\ 4,\ 5,\ 6,\ 7,\ 8,$
$\bar{x} \lt Me$
$\frac{1}{6}(30+x_{t}) \lt \frac{1}{2}(5+6) $
$30+x_{t} \lt 3(11) $
$x_{t} \lt 33-30 $
$x_{t} \lt 3 $
Nilai $x_{t}$ yang mungkin adalah $1,\ 2$
10.Soal SPMB 2006 (*Soal Lengkap)
Suatu ujian di ikuti dua kelompok dan setiap kelompok terdiri dari $5$ siswa. Nilai rata-rata kelompok I adalah $63$ dan kelompok II adalah $58$. Seorang siswa kelompok I pindah ke kelompok II sehingga nilai rata-rata kelompok I menjadi $65$. Maka nikai rata-rata kelompok II sekarang adalah...
$\begin{align}
(A)\ & 55,5 \\
(B)\ & 56 \\
(C)\ & 57,5 \\
(D)\ & 58 \\
(E)\ & 58,5
\end{align}$
Misalkan Kelompok $I$: $a_{1},\ a_{2},\ a_{3},\ a_{4},\ a_{5}$
Kelompok $II$: $b_{1},\ b_{2},\ b_{3},\ b_{4},\ b_{5}$
$\bar{x}=\dfrac{a_{1}+a_{2}+a_{3}+a_{4}+a_{5}}{5}$
$63=\dfrac{a_{1}+a_{2}+a_{3}+a_{4}+a_{5}}{5}$
$315=a_{1}+a_{2}+a_{3}+a_{4}+a_{5}$
$\bar{x}=\dfrac{b_{1}+b_{2}+b_{3}+b_{4}+b_{5}}{5}$
$58=\dfrac{b_{1}+b_{2}+b_{3}+b_{4}+b_{5}}{5}$
$290=b_{1}+b_{2}+b_{3}+b_{4}+b_{5}$
Seorang siswa Kelompok $I$ pindah ke Kelompok $II$ sehingga rata-rata Kelompok $I$ menjadi $65$;
$65=\dfrac{a_{1}+a_{2}+a_{3}+a_{4}}{4}$
$260=a_{1}+a_{2}+a_{3}+a_{4}$
$315=a_{1}+a_{2}+a_{3}+a_{4}+a_{5}$
$315=260+a_{5}$
$55=a_{5}$
Rata-rata kelompok II yang baru
$\bar{x}=\dfrac{b_{1}+b_{2}+b_{3}+b_{4}+b_{5}+a_{5}}{6}$
$\bar{x}=\dfrac{290+55}{6}$
$\bar{x}=\dfrac{345}{6}=57,5$
$\therefore$ Pilihan yang sesuai adalah $(C)\ 57,5$
11.Soal SPMB 2006 (*Soal Lengkap)
Berat rata-rata $10$ siswa adalah $60\ kg$. Salah seorang diantaranya diganti oleh Andi sehingga berat rata-ratanya menjadi $60,5\ kg$. Jika berat Andi $60\ kg$, maka berat siswa yang digantikan adalah...
$\begin{align}
(A)\ & 53 \\
(B)\ & 54 \\
(C)\ & 55 \\
(D)\ & 56 \\
(E)\ & 57
\end{align}$
Misalkan data: $x_{1},\ x_{2},\ x_{3},\ \cdots,\ x_{10}$
$\bar{x}=\dfrac{x_{1}+x_{2}+x_{3}+\cdots +x_{10}}{10}$
$60=\dfrac{x_{1}+x_{2}+x_{3}+\cdots +x_{10}}{10}$
$600=x_{1}+x_{2}+x_{3}+\cdots +x_{10}$
Salah seorang digantikan Andi, kita misalkan $x_{1}$
$60,5=\dfrac{x_{A}+x_{2}+x_{3}+\cdots +x_{10}}{10}$
$605=60+x_{2}+x_{3}+\cdots +x_{10}$
$545=x_{2}+x_{3}+\cdots +x_{10}$
$600=x_{1}+x_{2}+x_{3}+\cdots +x_{10}$
$600=x_{1}+545$
$x_{1}=600-545=55$
$\therefore$ Pilihan yang sesuai adalah $(C)\ 55$
12.Soal SNMPTN 2009 (*Soal Lengkap)
Rata-rata sekelompok bilangan adalah $40$. Ada bilangan yang sebenarnya adalah $60$, tetapi terbaca $30$. Setelah dihitung kembali ternyata rata-rata yang benar adalah $41$. Banyak bilangan dalam kelompok itu adalah...
$\begin{align}
(A)\ & 20 \\
(B)\ & 25 \\
(C)\ & 30 \\
(D)\ & 42 \\
(E)\ & 45
\end{align}$
Misalkan data: $x_{1},\ x_{2},\ x_{3}, \cdots ,\ x_{n}$
$\bar{x}=\dfrac{x_{1} + x_{2} + x_{3} + \cdots + x_{n}}{n}$
$40=\dfrac{30 + x_{2} + x_{3} + \cdots + x_{n}}{n}$
$40n=30 + x_{2} + x_{3} + \cdots + x_{n}$
$40n-30 = x_{2} + x_{3} + \cdots + x_{n}$
$\bar{x}=\dfrac{x_{1} + x_{2} + x_{3} + \cdots + x_{n}}{n}$
$41=\dfrac{60 + x_{2} + x_{3} + \cdots + x_{n}}{n}$
$41n=60 + x_{2} + x_{3} + \cdots + x_{n}$
$41n=60 + 40n-30$
$n=30$
$\therefore$ Pilihan yang sesuai adalah $(C)\ 30$
13.Soal SNMPTN 2012 (*Soal Lengkap)
Jika lima data memiliki rata-rata $12$, median $12$, modus $15$, dan range (jangkauan) $7$, maka data kedua setelah diurutkan adalah...
$\begin{align}
(A)\ & 9 \\
(B)\ & 10 \\
(C)\ & 11 \\
(D)\ & 12 \\
(E)\ & 13
\end{align}$
Misalkan data: $x_{1},\ x_{2},\ x_{3},\ x_{4},\ x_{5}$
$\text{Rata-rata}=12$
$\bar{x}=\dfrac{x_{1} + x_{2} + x_{3} + x_{4} + x_{5}}{5}$
$12=\dfrac{x_{1} + x_{2} + x_{3} + x_{4} + x_{5}}{5}$
$60=x_{1} + x_{2} + x_{3} + x_{4} + x_{5}$
$\text{Median}=12$
$Me=x_{3}=12$
$\text{Range}=7$
$x_{5} - x_{1}=7$
$x_{5} - 7=x_{1}$
$60=x_{1} + x_{2} + x_{3} + x_{4} + x_{5}$
$60=x_{5}-7 + x_{2} + 12 + x_{4} + x_{5}$
$60-5=x_{2}+ x_{4} + 2x_{5}$
$55=x_{2}+ x_{4} + 2x_{5}$
Karena $Me=x_{3}=12$ dan $Mo=15$ maka dapat kita simpulkan $x_{4}=x_{5}=15$.
Nilai $x_{2}+ x_{4} + 2x_{5}=55$
$x_{2}+ 15 + 30=55$
$x_{2}=55-45$
$x_{2}=10$
$\therefore$ Pilihan yang sesuai adalah $(B)\ 10$
14.Soal SBMPTN 2014 (*Soal Lengkap)
Tiga puluh data mempunyai rata-rata $p$. Jika rata-rata $20 \%$ data diantaranya adalah $p+0,1$, $40 \%$ lainnya adalah $p-0,1$, $10 \%$ lainnya lagi adalah $p-0,5$ dan rata-rata $30 \%$ data sisanya adalah $p+q$, maka $q=\cdots$
$\begin{align}
(A)\ & \frac{1}{5} \\
(B)\ & \frac{4}{15} \\
(C)\ & \frac{1}{3} \\
(D)\ & \frac{7}{30} \\
(E)\ & \frac{3}{10}
\end{align}$
Misalkan data: $x_{1},\ x_{2},\ x_{3},\ \cdots ,\ x_{30}$
$\bar{x}_{gab}=\dfrac{\bar{x}_{1} \cdot n_{1} + \bar{x}_{2} \cdot n_{2} + \bar{x}_{3} \cdot n_{3}+ \bar{x}_{4} \cdot n_{4}}{n_{1}+n_{2}+n_{3}+n_{4}}$
$p=\dfrac{(p+0,1) \cdot 6 + (p-0,1) \cdot 12 + (p-0,5) \cdot 3+ (p+q) \cdot 9}{6+12+3+9}$
$p=\dfrac{6p+0,6 + 12p-1,2 + 3p-1,5+ 9p+9q}{30}$
$p=\dfrac{30p+2,1+9q}{30}$
$30p=30p+2,1+9q$
$2,1=9q$
$q=\frac{2,1}{9}=\frac{21}{90}=\frac{7}{30}$
$\therefore$ Pilihan yang sesuai adalah $(D)\ \frac{7}{30}$
15. Soal SIMAK UI 2013 (*Soal Lengkap)
Diketahui sebuah data terdiri dari $n$ bilangan asli yang pertama. Jika salah satu data dihapus, rata-rata data yang tersisa adalah $\dfrac{61}{4}$, maka $n=\cdots$
$\begin{align}
(A)\ & 26 \\
(B)\ & 27 \\
(C)\ & 28 \\
(D)\ & 29 \\
(E)\ & 30
\end{align}$
Untuk soal pilihan ganda, soal ini bisa cepat ditemukan jawabnya dengan memakai keterangan soal yaitu setelah sebuah bilangan dihapus rata-ratanya adalah $\dfrac{61}{4}=15,25$ sehingga banyak bilangan setelah dihapus $(n-1)$ harus kelipatan $4$ dengan asumsi jika $\dfrac{61}{4}$ dijumlahkan sebanyak $(n-1)$ kali hasilnya harus bilangan asli, maka nilai $n$ yang memenuhi adalah $n=29$.
Tetapi jika soal disajikan uraian maka cara kerjanya akan berbeda atau yang buat soal lebih cerdik dalam membuat pilihan misalnya pilihan dirubah menjadi: $(A)\ 17\ (B)\ 21\ (C)\ 25\ (D)\ 29\ (E)\ 33$
Untuk $n$ bilangan asli pertama rata-ratanya adalah:
$\overline{x}=\dfrac{1+2+3+\cdots+n}{n}$
$\overline{x}=\dfrac{\dfrac{n(n+1)}{2}}{n}$
$\overline{x}=\dfrac{n+1}{2}$
$\overline{x}=\dfrac{n}{2}+\dfrac{1}{2}$
Jika bilangan terkecil dikurangi maka rata-ratanya adalah:
$\overline{x}_{b1}=\dfrac{2+3+\cdots+n}{n-1}$
$\overline{x}_{b1}=\dfrac{\dfrac{(n-1)}{2}\left (2(2)+(n-1-1)1 \right )}{n-1}$
$\overline{x}_{b1}=\dfrac{\dfrac{(n-1)}{2}\left (n+2 \right )}{n-1}$
$\overline{x}_{b1}=\dfrac{n+2}{2}$
$\overline{x}_{b1}=\dfrac{n}{2}+1$
$\overline{x}_{b1}=\overline{x}+\dfrac{1}{2}$
Jika bilangan terbesar dikurangi maka rata-ratanya adalah:
$\overline{x}_{b2}=\dfrac{1+2+3+\cdots+n-1}{n-1}$
$\overline{x}_{b2}=\dfrac{\dfrac{(n-1)}{2}\left (2(1)+(n-1-1)1 \right )}{n-1}$
$\overline{x}_{b2}=\dfrac{\dfrac{(n-1)}{2}\left (n \right )}{n-1}$
$\overline{x}_{b2}=\dfrac{n}{2}$
$\overline{x}_{b2}=\overline{x}-\dfrac{1}{2}$
Dari dua eksplorasi di atas untuk $n$ bilangan asli pertama jika salah satu bilangan dihapus maka rata-rata data yang baru berada pada rentang
$\overline{x}_{b2} \leq \overline{x}_{b} \leq \overline{x}_{b1}$.
$\overline{x}- \dfrac{1}{2} \leq \overline{x}_{b} \leq \overline{x}+\dfrac{1}{2}$.
Pada soal disampaikan bahwa rata-rata setelah sebuah bilangan dihapus rata-ratanya adalah $\dfrac{61}{4}=15,25$ maka:
- $\overline{x}- \dfrac{1}{2} \leq 15,25 \leq \overline{x}+\dfrac{1}{2}$
- $15,25 \leq \overline{x}+\dfrac{1}{2}$
$14,75 \leq \overline{x}$ - $\overline{x}- \dfrac{1}{2} \leq 15,25$
$\overline{x} \leq 15,75$
Dari pertidaksamaan diatas kita peroleh;
$14,75 \leq \overline{x} \leq 15,75$
$14,75 \leq \dfrac{n}{2}+\dfrac{1}{2} \leq 15,75$
$14,25 \leq \dfrac{n}{2} \leq 15,25$
$28,5 \leq n \leq 30,5$
$n$ adalah banyak bilangan sehingga nilai $n$ yang memenuhi adalah $29$ atau $30$. Karena setelah sebuah bilangan dihapus rata-ratanya adalah $\dfrac{61}{4}=15,25$ sehingga banyak bilangan $(n-1)$ setelah dihapus harus kelipatan $4$ dengan asumsi jika $\dfrac{61}{4}$ dijumlahkan sebanyak $(n-1)$ kali hasilnya harus bilangan asli, maka nilai $n$ yang memenuhi adalah $n=29$.
$\therefore$ Pilihan yang sesuai adalah $(D)\ 29$
16. Soal SIMAK UI 2013 (*Soal Lengkap)
Diketahui sebuah data terdiri dari $n$ bilangan asli yang pertama. Jika salah satu data dihapus, rata-rata data yang tersisa adalah $\dfrac{61}{4}$. Bilangan yang dihapus tersebut adalah...
$\begin{align}
(A)\ & 8 \\
(B)\ & 9 \\
(C)\ & 10 \\
(D)\ & 11 \\
(E)\ & 12
\end{align}$
Untuk $n$ bilangan asli pertama rata-ratanya adalah:
$\overline{x}=\dfrac{1+2+3+\cdots+n}{n}$
$\overline{x}=\dfrac{\dfrac{n(n+1)}{2}}{n}$
$\overline{x}=\dfrac{n+1}{2}$
$\overline{x}=\dfrac{n}{2}+\dfrac{1}{2}$
Jika bilangan terkecil dikurangi maka rata-ratanya adalah:
$\overline{x}_{b1}=\dfrac{2+3+\cdots+n}{n-1}$
$\overline{x}_{b1}=\dfrac{\dfrac{(n-1)}{2}\left (2(2)+(n-1-1)1 \right )}{n-1}$
$\overline{x}_{b1}=\dfrac{\dfrac{(n-1)}{2}\left (n+2 \right )}{n-1}$
$\overline{x}_{b1}=\dfrac{n+2}{2}$
$\overline{x}_{b1}=\dfrac{n}{2}+1$
$\overline{x}_{b1}=\overline{x}+\dfrac{1}{2}$
Jika bilangan terbesar dikurangi maka rata-ratanya adalah:
$\overline{x}_{b2}=\dfrac{1+2+3+\cdots+n-1}{n-1}$
$\overline{x}_{b2}=\dfrac{\dfrac{(n-1)}{2}\left (2(1)+(n-1-1)1 \right )}{n-1}$
$\overline{x}_{b2}=\dfrac{\dfrac{(n-1)}{2}\left (n \right )}{n-1}$
$\overline{x}_{b2}=\dfrac{n}{2}$
$\overline{x}_{b2}=\overline{x}-\dfrac{1}{2}$
Dari dua eksplorasi di atas untuk $n$ bilangan asli pertama jika salah satu bilangan dihapus maka rata-rata data yang baru berada pada rentang
$\overline{x}_{b2} \leq \overline{x}_{b} \leq \overline{x}_{b1}$.
$\overline{x}- \dfrac{1}{2} \leq \overline{x}_{b} \leq \overline{x}+\dfrac{1}{2}$.
Pada soal disampaikan bahwa rata-rata setelah sebuah bilangan dihapus rata-ratanya adalah $\dfrac{61}{4}=15,25$ maka:
- $\overline{x}- \dfrac{1}{2} \leq 15,25 \leq \overline{x}+\dfrac{1}{2}$
- $15,25 \leq \overline{x}+\dfrac{1}{2}$
$14,75 \leq \overline{x}$ - $\overline{x}- \dfrac{1}{2} \leq 15,25$
$\overline{x} \leq 15,75$
Dari pertidaksamaan diatas kita peroleh;
$14,75 \leq \overline{x} \leq 15,75$
$14,75 \leq \dfrac{n}{2}+\dfrac{1}{2} \leq 15,75$
$14,25 \leq \dfrac{n}{2} \leq 15,25$
$28,5 \leq n \leq 30,5$
$n$ adalah banyak bilangan sehingga nilai $n$ yang memenuhi adalah $29$ atau $30$. Karena setelah sebuah bilangan dihapus rata-ratanya adalah $\dfrac{61}{4}=15,25$ sehingga banyak bilangan $(n-1)$ setelah dihapus harus kelipatan $4$ dengan asumsi jika $\dfrac{61}{4}$ dijumlahkan sebanyak $(n-1)$ kali hasilnya harus bilangan asli, maka nilai $n$ yang memenuhi adalah $n=29$.
Untuk $29$ bilangan asli pertama rata-ratanya adalah:
$\overline{x}=\dfrac{1+2+3+\cdots+n}{n}$
$\overline{x}=\dfrac{29+1}{2}=15$
Jika sebuah bilangan dihapus maka rata-ratanya adalah:
$\overline{x}=\dfrac{(1+2+3+\cdots+29)-x}{n-1}$
$\dfrac{61}{4}=\dfrac{(1+2+3+\cdots+29)-x}{28}$
$\dfrac{61}{4} \times 28= 1+2+3+\cdots+29 -x$
$427= 1+2+3+\cdots+29 -x$
$427= 435 -x$
$x= 435-427=8 $
$\therefore$ Pilihan yang sesuai adalah $(A)\ 8$
17. Soal SIMAK UI 2013 Kode 334 (*Soal Lengkap)
Data hasil pengukuran tinggi dari sembilan pohon yangsedang dalam pengamatan adalah sebagai berikut:
Nilai data tertinggi - data terendah adalah....
- Semua data beruap bilangan bulat tak nol
- Mean=median=modus=$3$
- Berdasarkan frekuensinya data terdiri dari 3 kelompok
- Jumlah kuadrat semua data adalah $105$
$\begin{align}
(A)\ & 4 \\
(B)\ & 5 \\
(C)\ & 6 \\
(D)\ & 7 \\
(E)\ & 6
\end{align}$
Jika $9$ tinggi pohon berupa bilangan asli kita misalkan $x_{1},\ x_{2},\ x_{3}, \cdots,\ x_{9}$, maka
$\dfrac{x_{1}+x_{2}+x_{3}+\cdots +x_{n}}{n}=\bar{x}$
$\dfrac{x_{1}+x_{2}+x_{3}+\cdots +x_{9}}{9}=3$
$x_{1}+x_{2}+x_{3}+\cdots +x_{9}=27$
Karena $median\ =\ modus\ =\ 3$, berdasarkan frekuensi data terbagi menjadi tiga kelompok dan jumlah kuadrat adalah $105$, maka beberapa kemungkinan data adalah sebagai berikut;
- $x_{1}+7 \times 3 +x_{9}=27$
$x_{1}+x_{9}=27-21=6$
- $x_{1}=1$ dan $x_{9}=5$ maka Jumlah kuadrat $1^{2}+7 \times 3^{2}+5^{2}=89$ (TM)
- $x_{1}=2$ dan $x_{9}=4$ maka jumlah kuadrat $2^{2}+7 \times 3^{2}+4^{2}=83$ (TM)
- $x_{1}+x_{2}+6 \times 3 +x_{9}=27$
$x_{1}+x_{2}+x_{9}=27-18=9$
- $x_{1}=1,\ x_{2}=2$ dan $x_{9}=6$ maka jumlah kuadrat $1^{2}+2^{2}+6 \times 3^{2}+6^{2}=95$ (TM)
- $x_{1}=x_{2}=1$ dan $x_{9}=7$ maka jumlah kuadrat $1^{2}+1^{2}+6 \times 3^{2}+7^{2}=105$
$\therefore$ Pilihan yang sesuai adalah $(C)\ 6$
18. Soal SBMPTN 2018 Kode 526 (*Soal Lengkap)
Sebelas siswa mengikuti suatu tes dan median nilai tes mereka adalah $91$. Jika sudah diketahui tiga siswa memperoleh nilai $100$, satu siswa memperoleh nilai $96$, tiga siswa memperoleh nilai $90$, serta dua siswa memperoleh nilai $86$, maka nilai dua siswa yang belum diketahui yang paling mungkin adalah...
$\begin{align}
(A)\ & 100\ \text{dan}\ 100 \\
(B)\ & 100\ \text{dan}\ 90 \\
(C)\ & 95\ \text{dan}\ 90 \\
(D)\ & 93\ \text{dan}\ 91 \\
(E)\ & 91\ \text{dan}\ 86
\end{align}$
Nilai $11$ siswa kita misalkan sebagai berikut:
$x_{1},\ x_{2},\ x_{3},\ x_{4},\ x_{5},\ x_{6},\ x_{7},\ x_{8},\ x_{9},\ x_{10},\ x_{11}$
Karena nilai sudah ada yang diketahui, menjadi:
$x_{1},\ x_{2},\ x_{3},\ x_{4},\ x_{5},\ (91),\ x_{7},\ x_{8},\ 100,\ 100,\ 100$
$86,\ 86,\ x_{3},\ x_{4},\ x_{5},\ (91),\ x_{7},\ x_{8},\ 100,\ 100,\ 100$
Untuk nilai $90$ tempatnya:
$86,\ 86,\ 90,\ 90,\ 90,\ (91),\ x_{7},\ x_{8},\ 100,\ 100,\ 100$
Untuk letak nilai $96$ ada di dua kemungkinan:
$86,\ 86,\ 90,\ 90,\ 90,\ (91),\ 96,\ x_{8},\ 100,\ 100,\ 100$
$86,\ 86,\ 90,\ 90,\ 90,\ (91),\ x_{7},\ 96,\ 100,\ 100,\ 100$
Nilai yang mungkin pada pilihan adalah $91$ dan $93$.
$\therefore$ Pilihan yang sesuai adalah $(D)\ 93\ \text{dan}\ 91$
19. Soal SBMPTN 2018 Kode 527 (*Soal Lengkap)
Sebelas siswa mengikuti suatu tes. Guru mengumumkan bahwa jangkauan data nilai siswa tersebut adalah $15$. Jika diumumkan tiga siswa memperoleh nilai $100$, satu siswa memperoleh nilai $96$, tiga siswa memperoleh nilai $90$, serta dua siswa memperoleh nilai $86$, maka nilai dua siswa yang belum diketahui yang paling mungkin adalah...
$\begin{align}
(A)\ & 99\ \text{dan}\ 85 \\
(B)\ & 99\ \text{dan}\ 88 \\
(C)\ & 95\ \text{dan}\ 91 \\
(D)\ & 89\ \text{dan}\ 87 \\
(E)\ & 85\ \text{dan}\ 84
\end{align}$
Nilai $11$ siswa kita misalkan sebagai berikut:
$x_{1},\ x_{2},\ x_{3},\ x_{4},\ x_{5},\ x_{6},\ x_{7},\ x_{8},\ x_{9},\ x_{10},\ x_{11}$
Karena nilai sudah ada yang diketahui, menjadi:
$x_{1},\ x_{2},\ x_{3},\ x_{4},\ x_{5},\ x_{6},\ x_{7},\ x_{8},\ 100,\ 100,\ 100$
Jangkaun data adalah $100-x_{1}=15$ maka $x_{1}=85$
$(85),\ x_{2},\ x_{3},\ x_{4},\ x_{5},\ x_{6},\ x_{7},\ x_{8},\ 100,\ 100,\ 100$
Letak nilai $86$ dan $86$:
$(85),\ 86,\ 86,\ x_{4},\ x_{5},\ x_{6},\ x_{7},\ x_{8},\ 100,\ 100,\ 100$
Letak nilai $90,90,90$, dan $96$:
$(85),\ 86,\ 86,\ 90,\ 90,\ 90,\ 96,\ x_{8},\ 100,\ 100,\ 100$
$(85),\ 86,\ 86,\ 90,\ 90,\ 90,\ x_{8},\ 96,\ 100,\ 100,\ 100$
$(85),\ 86,\ 86,\ x_{4},\ 90,\ 90,\ 90,\ 96,\ 100,\ 100,\ 100$
Nilai yang mungkin pada pilihan adalah $85$ dan $99$.
$\therefore$ Pilihan yang sesuai adalah $(A)\ 99\ \text{dan}\ 85$
20. Soal SIMAK UI 2018 Kode 641 (*Soal Lengkap)
Rata-rata tiga bilangan adalah $10$ lebihnya dibandingkan dengan bilangan terkecil dan $8$ kurangnya dibandingkan dengan bilangan terbesar. Jika median ketiga bilangan tersebut adalah $14$, maka...
$(1)\ $ jangkauannya adalah $18$
$(2)\ $ variansianya adalah $84$
$(3)\ $ jumlahnya adalah $36$
$(4)\ $ simpangan rata-ratanya adalah $\dfrac{20}{3}$
Kita misalkan ketiga bilangan tersebut jika kita urutkan dari yang terkecil adalah $a,14,b$
$ \begin{align}
\overline{x} & = \dfrac{a+14+b}{3} \\
a+10 & = \dfrac{a+14+b}{3} \\
3a+30 & = a+14+b \\
2a-b & = -16\ \text{pers.(1)}\\
\overline{x} & = \dfrac{a+14+b}{3} \\
b-8 & = \dfrac{a+14+b}{3} \\
3b-24 & = a+14+b \\
2b-a & = 38\ \text{pers.(2)}
\end{align} $
Dari persamaan yang kita peroleh di atas;
$\begin{array}{c|c|cc}
2a-b = -16\ & (\times 1) \\
2b-a =38\ & (\times 2) \\
\hline
2a-b = -16 & \\
4b-2a=76 & (+) \\
\hline
3b = 60 &\\
b = 20 &\\
a = 2(b)-38=2 &
\end{array} $
Ketiga bilangan adalah $2,14,20$ dengan $\overline{x}=12$
Pembahasan untuk setiap point coba kita jabarkan
- Untuk point $(1)$ pernyataan jangkauannya adalah $18$ adalah BENAR, karena $J=20-2=18$
- Untuk point $(2)$ pernyataan variansianya adalah $84$ adalah BENAR
Varians untuk data tunggal dirumuskan$ \begin{align}
S^{2} & = \dfrac{\sum_{i=1}^{n}(\overline{x}-x_{i})^{2}}{n-1} \\
& = \dfrac{(12-2)^{2}+(14-12)^{2}+(20-12)^{2}}{3-1} \\
& = \dfrac{100+4+64}{2} \\
& = \dfrac{168}{2}= 84
\end{align} $ - Untuk point $(3)$ pernyataan jumlahnya adalah $36$ adalah BENAR, karena $2+14+20=36$
- Untuk point $(4)$ pernyataan simpangan rata-ratanya adalah $\dfrac{20}{3}$ adalah BENAR
$ \begin{align}
SR & = \dfrac{\sum_{i=1}^{n} | \overline{x}-x_{i}| }{n} \\
& = \dfrac{|12-2|+|14-12|+|20-12|}{3} \\
& = \dfrac{10+2+8}{3} \\
& = \dfrac{20}{3}
\end{align} $
Jika engkau tidak sanggup menahan lelahnya belajar, Maka engkau harus menanggung pahitnya kebodohan ___pythagoras
Beberapa pembahasan soal Matematika Dasar Statistika Data Tunggal (*Soal Dari Berbagai Sumber) di atas adalah coretan kreatif siswa pada- lembar jawaban penilaian harian matematika,
- lembar jawaban penilaian akhir semester matematika,
- presentasi hasil diskusi matematika atau
- pembahasan quiz matematika di kelas.
Jangan Lupa Untuk Berbagi 🙏Share is Caring 👀 dan JADIKAN HARI INI LUAR BIASA! - WITH GOD ALL THINGS ARE POSSIBLE😊
Siswa kreatif ini mampu menunjukkan kreativitas dan kemampuannya melalui PBB, mari kita lihat keterampilan kreatif mereka;
0 Response to "Bank Soal Matematika Dasar Statistika Data Tunggal (*Soal dan Pembahasan)"
Post a Comment